
Audit
Jupiter Perp

Presented by:

OtterSec contact@osec.io

Nicola Vella nick0ve@osec.io

Thibault Marboud thibault@osec.io

Robert Chen r@osec.io

mailto:contact@osec.io
mailto:nick0ve@osec.io
mailto:thibault@osec.io
mailto:r@osec.io

Contents
01 Executive Summary 2

Overview . 2
Key Findings . 2

02 Scope 3

03 Findings 4

04 Vulnerabilities 5
OS-JPT-ADV-00 [high] | Rounding Error . 6
OS-JPT-ADV-01 [high] | Front-Running Position Execution . 8
OS-JPT-ADV-02 [med] | Integer Overflow/Underflow . 9
OS-JPT-ADV-03 [med] | Fund Loss Via Malicious Keeper . 11
OS-JPT-ADV-04 [low] | Inability To Close Position . 13
OS-JPT-ADV-05 [low] | Missing Validation . 14
OS-JPT-ADV-06 [low] | Event Manipulation . 15

05 General Findings 16
OS-JPT-SUG-00 | Pool Name Length Constraint . 17
OS-JPT-SUG-01 | Protocol Modifications . 18

Appendices

A Vulnerability Rating Scale 19

B Procedure 20

© 2023 Otter Audits LLC. All Rights Reserved. 1 / 20

01 | Executive Summary

Overview
Jupiter engaged OtterSec to perform an assessment of the perpetuals program. This assessment
was conducted between October 3rd and November 15th, 2023. For more information on our auditing
methodology, see Appendix B.

Key Findings
Over the course of this audit engagement, we produced 9 findings in total.

In particular, we have identified two high-risk issues, including a rounding error in the computation of the
average position price (OS-JPT-ADV-00) and the possibility of updating a position request to front-run the
Keeper (OS-JPT-ADV-01).

Furthermore, we have highlighted a fund loss issue in the case of a malicious keeper (OS-JPT-ADV-03).
and an event manipulation issue (OS-JPT-ADV-06).

Wealsomadea recommendation around the lack ofmultiple pool authorities and inclusionof a predefined
withdraw delay, potentially raising security issues in the future (OS-JPT-SUG-01) and suggested including
a length constraint on the pool name to prevent collisions with pool accounts (OS-JPT-SUG-00).

© 2023 Otter Audits LLC. All Rights Reserved. 2 / 20

02 | Scope
The source code was delivered to us in a git repository at github.com/jup-ag/perpetuals. This audit was
performed against commit 33acf0e.

A brief description of the programs is as follows:

Name Description

perpetuals An open-source implementation of a non-custodial decentralized exchange supporting
leveraged trading across a range of assets.

© 2023 Otter Audits LLC. All Rights Reserved. 3 / 20

https://github.com/jup-ag/perpetuals
https://github.com/jup-ag/perpetuals/commit/33acf0e8c97be0ff9a0ac5851fd286ebce4d2d1f

03 | Findings
Overall, we reported 9 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings do not have an immediate impact but
will aid in mitigating future vulnerabilities.

Severity Count

Critical 0
High 2

Medium 2
Low 3

Informational 2

© 2023 Otter Audits LLC. All Rights Reserved. 4 / 20

04 | Vulnerabilities
Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

ID Severity Status Description

OS-JPT-ADV-00 High Resolved Rounding down next_price results in the constant aver-
age price during minor increments of size_usd_delta.

OS-JPT-ADV-01 High Resolved Initiatingupdate_decrease_position_request and
update_increase_position_request with the in-
tent to front-run the keeper.

OS-JPT-ADV-02 Medium Resolved Integer overflow in swap_usd_amount and integer under-
flow in dispensing_custody due to a lack of checks in
swap instructions.

OS-JPT-ADV-03 Medium Resolved An incorrect check for program ID allows a keeper to drain a
pool’s collateral_custody_token_account.

OS-JPT-ADV-04 Low Resolved Utilizing SystemAccount for ownership validation may
prevent the closure of open positions.

OS-JPT-ADV-05 Low Resolved Custody::validate fails to call
self.funding_rate_state.validate, allowing the
setting of the funding rate to high values.

OS-JPT-ADV-06 Low Resolved The amount field in ClosePositionRequestEvent
may display incorrect information.

© 2023 Otter Audits LLC. All Rights Reserved. 5 / 20

Jupiter Perp Audit 04 | Vulnerabilities

OS-JPT-ADV-00 [high]| Rounding Error

Description

The size_usd_delta parameter in get_new_price is manipulable to artificially increase the posi-
tion’s average price without a corresponding increase in the average position price. get_new_price
calculates the new average price of a trading position based on changes in size and the current mar-
ket price. The vulnerability arises since the function does not enforce a minimum size_usd_delta,
allowing an attacker to incrementally increase the position size while keeping the average price identical.

get_position.rs RUST

pub fn get_new_price(&self, next_price: u64, size_usd_delta: u64) -> Result<u64> {
if self.size_usd == 0 {

return Ok(next_price);
}

if size_usd_delta == 0 {
return Ok(self.price);

}

let next_size = math::checked_add(self.size_usd, size_usd_delta)?;
// get PnL delta
let price_delta = self.price.abs_diff(next_price);
let pnl_delta: u64 = math::checked_as_u64(math::checked_div(

math::checked_mul(self.size_usd as u128, price_delta as u128)?,
self.price as u128,

)?)?;

// when price go up, pnl is positive for long, negative for short
// when price go down, pnl is negative for long, positive for short
let next_size_with_pnl = if next_price > self.price {

math::checked_add(next_size, pnl_delta)?
} else {

math::checked_sub(next_size, pnl_delta)?
};

math::checked_as_u64(math::checked_div(
math::checked_mul(next_size as u128, next_price as u128)?,
next_size_with_pnl as u128,

)?)
}

This results in the average price for a position not rising proportionally and remaining consistent. Conse-
quently, given that the position price is now notably higher, while the average price remains unchanged,
the user realizes a substantial profit upon exiting the position, as the protocol utilizes the average price to
compute the profit and loss (PnL) during the exit.

© 2023 Otter Audits LLC. All Rights Reserved. 6 / 20

Jupiter Perp Audit 04 | Vulnerabilities

Proof of Concept

1. Assume there is a long positionwith an initialsize_usd quantity and an initialaverage_price.

2. The market price increases.

3. An attacker incrementally increases the position with a small size_usd_delta (e.g., one) each
time.

4. Since the protocol utilizes round-down logic when calculating the average price, the small
size_usd_delta does not trigger any change, and the average price effectively remains the
same.

5. After multiple iterations of increasing the position size with small size_usd_delta values, the
position’s size_usd becomes larger, but the average price remains the same.

6. Upon the attacker’s decision to close the position, the calculation of profit occurs utilizing the
average price. Given that the average price has not risen in proportion to the growth in position size,
the attacker realizes a profit from the position.

Remediation

Ensure for long positions, the average price is rounded up, while for short positions, the average price is
rounded down.

Patch

Fixed in 80fdf99.

© 2023 Otter Audits LLC. All Rights Reserved. 7 / 20

https://github.com/jup-ag/perpetuals/commit/80fdf9980e69e3415a7cfdab127f7ca94b6febea

Jupiter Perp Audit 04 | Vulnerabilities

OS-JPT-ADV-01 [high]| Front-Running Position Execution

Description

update_decrease_position_requestandupdate_increase_position_request instruc-
tions allow users to update their position requests at anytime before the actual execution. The user can
use his advantage to front-runs the keeper by adjusting their position based on the latest oracle update. A
user may exploit this to gain an advantage by adjusting their position based onmarket movements after
setting the trigger.

perpetuals/src/lib.rs RUST

pub mod perpetuals {
use super::*;
// admin instructions
pub fn update_increase_position_request(

ctx: Context<UpdateIncreasePositionRequest>,
params: UpdateIncreasePositionRequestParams,

) -> Result<()> {
instructions::update_increase_position_request(ctx, ¶ms)

}

pub fn update_decrease_position_request(
ctx: Context<UpdateDecreasePositionRequest>,
params: UpdateDecreasePositionRequestParams,

) -> Result<()> {
instructions::update_decrease_position_request(ctx, ¶ms)

}
[...]

}

Thus, by updating the position request, the user essentially front-runs the keeper by adjusting their
position based on the latest market conditions slightly before the keeper executes the request. The
user may increase the leverage to secure a more advantageous PnL in a favorable market movement.
Conversely, they may decrease leverage for a reduced position size to mitigate losses in an unfavorable
market movement.

Remediation

Ensure that the execution of a request considers modification of the request within the same slot. Store
the slot information of the request inside the corresponding account and check it during the execution
process.

Patch

Fixed in a1e35e7.

© 2023 Otter Audits LLC. All Rights Reserved. 8 / 20

https://github.com/jup-ag/perpetuals/pull/19/commits/a1e35e77c225429e6243d8319efce55418e8e9bd

Jupiter Perp Audit 04 | Vulnerabilities

OS-JPT-ADV-02 [med]| Integer Overflow/Underflow

Description

The vulnerability pertains to a potential integer overflow that may occur in all swap instructions during
the computation of swap_usd_amountwhen handling high-valued assets. Specifically,
swap_usd_amount, being of type u64, is susceptible to overflow if the product of the received token’s
price and the input amount surpasses the maximum value representable by a u64.

perpetuals/src/instruction/swap_exact_out.rs RUST

let swap_usd_amount = math::checked_mul(
received_token_price

.scale_to_exponent(-(Perpetuals::PRICE_DECIMALS as i32))?

.price,
params.amount_in.0,

)?;

An overflow of this nature may yield inaccuracies in calculating USD values for the swap, consequently
affecting fee calculations and impacting the overall functionality of the swapping logic. Furthermore, the
swap functions lack validation to ensure that the dispensing_custody account possesses adequate
liquidity before executing the swap. The dispensing_custody account, responsible for providing
funds for the amount_out value, may thus experience an underflow if insufficient funds exist.

Proof of Concept

Consider an example using Bitcoin (BTC) as the received token with a very high price:

RUST

// BTC oracle price
let received_token_price = OraclePrice {

price: 34918115102500 // 34918.1151025 USD
exponent: -8, // 10^(-8)

};

// Input amount in SOL
let amount_in = 1000000000; // 1 SOL

As shown above, price is 34918115102500 and amount_in is 1000000000, thus swap_usd_amount
will be price*amount_in, which results in a value that is greater than U64:max, overflowing.

© 2023 Otter Audits LLC. All Rights Reserved. 9 / 20

Jupiter Perp Audit 04 | Vulnerabilities

Remediation

Ensure to check for potential overflow scenarios or modify the type of swap_usd_amount amount to
handle larger numbers without any issues. Additionally, validate that dispensing_custody account
contains enough funds to cover the intended swap.

Patch

Fixed in 224a273.

© 2023 Otter Audits LLC. All Rights Reserved. 10 / 20

https://github.com/jup-ag/perpetuals/pull/8/commits/224a27332caa63a010437711d4a3be52fb115c2f

Jupiter Perp Audit 04 | Vulnerabilities

OS-JPT-ADV-03 [med]| Fund Loss Via Malicious Keeper

Description

There is an incorrect check inincrease_position_pre_swap during the verification of the program
ID. The validation checks whether the program ID linked to the current instruction
(current_ixn.program_id) aligns with the anticipated program ID (*ctx.program_id). The
issue stems fromutilizing the program ID from the current instruction instead of the program ID associated
with the increase_position_ixn instruction.

increase_position_pre_swap.rs RUST

pub fn increase_position_pre_swap(
ctx: Context<IncreasePositionPreSwap>,
_params: &IncreasePositionPreSwapParams,

) -> Result<()> {
[...]
// Check Increase Position Ix
if let Ok(increase_position_ixn) = load_instruction_at_checked(current_idx + 2,

&instruction) {↪→

require_keys_eq!(
current_ixn.program_id,
*ctx.program_id,
PerpetualsError::CPINotAllowed

);
[...]

}

This introduces a vulnerability where amalicious actor, the keeper, may exploit the system by draining
the collateral_custody_token_account.

Proof of Concept

1. The vault keeper initiates a valid transaction
(JupiterPerps::increase_position_pre_swap) involvingPositionRequest1, with
PositionRequest1.pre_swap_amount and
collateral_custody_token_account.amount both set to 10,000.

2. The systemexecutes theJupiter::shared_accounts_route instruction,which swaps some
tokens through Jupiter, resulting in an increase in
collateral_custody_token_account.amount to 10,100.

3. The malicious keeper sends a padding instruction to a program they control. This instruction does
nothing except satisfy all the checks enforced by increase_position_pre_swap. The keeper
waits for legitimate transactions that will increase
collateral_custody_token_account.amount to, for example, 100,000.

© 2023 Otter Audits LLC. All Rights Reserved. 11 / 20

Jupiter Perp Audit 04 | Vulnerabilities

4. The malicious keeper sends another transaction (JupiterPerps::increase_position)
claiming to increase PositionRequest1. The vulnerable code mistakenly calculates the de-
posited amount based on the previous collateral_custody_token_account.amount
and the initial PositionRequest1.pre_swap_amount, by subtracting them to obtain 89900,
while the keeper deposited only 100. This allows the attacker to extract tokens without the system
realizing the discrepancy.

Remediation

Utilize the correct program ID (increase_position_ixn.program_id) in the check. This ensures
the check validates the program ID associated with the increased position instruction.

Patch

Fixed in ac98728.

© 2023 Otter Audits LLC. All Rights Reserved. 12 / 20

https://github.com/jup-ag/perpetuals/commit/ac98728af5a1dfd27901e2f5f76920c31dfddee1

Jupiter Perp Audit 04 | Vulnerabilities

OS-JPT-ADV-04 [low] | Inability To Close Position

Description

ClosePositionRequest allows the owner or a whitelisted keeper to close a perpetual position re-
quest. It transfers tokens and closes accounts associated with the position request, emitting an event to
capture the relevant information.

close_position_request.rs RUST

pub struct ClosePositionRequest<'info> {
pub keeper: Option<Signer<'info>>,
#[account(mut)]
pub owner: SystemAccount<'info>,
[...]

}

The issue is related to the ownership of the position account when created by a program derived ad-
dress owned by another program. In ClosePositionRequest, the protocol assumes the owner of
the position to be a SystemAccount. However, a position could be created by an external program
using a program derived address (PDA). In that case, the owner account validation will fail due to the
SystemAccount type, thus rendering this instruction unusable, preventing the closure of open posi-
tions.

Remediation

Replace the SystemAccount type with UncheckedAccount, enabling program derived addresses
to invoke this instruction.

Patch

Fixed in 802da52.

© 2023 Otter Audits LLC. All Rights Reserved. 13 / 20

https://github.com/jup-ag/perpetuals/commit/802da52e3eb04b4956321b4ddace4bb4394b820e

Jupiter Perp Audit 04 | Vulnerabilities

OS-JPT-ADV-05 [low] |Missing Validation

Description

validate inCustodyperformsvalidation checkson theparameters andattributesof a custodyaccount.
It returns a boolean value indicating whether the custody is valid based on specific criteria.

custody.rs RUST

impl FundingRateState {
pub fn validate(&self) -> bool {

(self.hourly_funding_bps as u128) <= Perpetuals::BPS_POWER
}

}

impl Custody {

pub fn validate(&self) -> bool {
self.token_account != Pubkey::default()

&& self.mint != Pubkey::default()
&& self.oracle.validate()
&& self.pricing.validate()
&& (self.target_ratio_bps as u128) <= Perpetuals::BPS_POWER

}
[...]

}

However, it fails to call self.funding_rate_state.validate internally, which checks if the fund-
ing rate is less than or equal to the definedmaximum threshold (BPS_POWER). Thus, there is no constraint
on how high the funding rate may become, which is not desirable, as extremely high funding rates dispro-
portionately benefit one side (long or short).

Remediation

Call self.funding_rate_state.validatewithin validate.

Patch

Fixed in e7a777f.

© 2023 Otter Audits LLC. All Rights Reserved. 14 / 20

https://github.com/jup-ag/perpetuals/commit/e7a777fdecc51dc0d521e2daa3df0c072de2d868

Jupiter Perp Audit 04 | Vulnerabilities

OS-JPT-ADV-06 [low] | Event Manipulation

Description

ClosePositionRequestEvent is intended to capture informationabout closing aposition. However,
a potential issue arises if sending tokens to the associated token account before the event emission,
allowing manipulation of the amount field in the event, as it is directly derived from the
position_request_ata account’s amount.

events.rs RUST

#[event]
pub struct ClosePositionRequestEvent {

pub position_request_key: Pubkey,
pub owner: Pubkey,
pub mint: Pubkey,
pub amount: TokenAmount,

}

Hence, if sending tokens to the associated token account related to position_request before
ClosePositionRequest is executed, the amount in the associated token account would increase
and since the amount field in ClosePositionRequestEvent is derived from
position_request_ata account’s amount, the event would consequently reflect the manipulated
amount.

Since the event should be a reliable source of information regarding the closing of a position, especially
for utilization by off-chain applications, the emission of suchmisleading or inaccurate informationmay
affect the operation of all applications relying on this event.

Remediation

Ensure the integrity of ClosePositionRequestEvent. It is advisable to validate or freeze the state
of associated accounts before capturing information for the event.

Patch

Fixed in aab8cea.

© 2023 Otter Audits LLC. All Rights Reserved. 15 / 20

https://github.com/jup-ag/perpetuals/pull/13/commits/aab8cea02b61023546f633b479dd238d0f1421f9

05 | General Findings
Here, we present a discussion of general findings during our audit. While these findings do not present an
immediate security impact, they represent anti-patterns andmay result in security issues in the future.

ID Description

OS-JPT-SUG-00 AddPoll lacks a length constraint on the pool name potentially colliding with pool
accounts.

OS-JPT-SUG-01 The lack of multiple pool authorities and the inclusion of a predefined withdrawal
delay raise potential security issues in the future.

© 2023 Otter Audits LLC. All Rights Reserved. 16 / 20

Jupiter Perp Audit 05 | General Findings

OS-JPT-SUG-00 | Pool Name Length Constraint

Description

AddPool initializes a new pool, and the params.name field represents the pool’s name and is one of
the seeds that create the pool’s program derived address. If the length of params.name exceeds 32
bytes, it may result in collisions with other program derived addresses, especially if the combination of all
seeds exceeds the length limit, overlapping and interfering with different pool accounts.

add_pool.rs RUST

pub fn add_pool(ctx: Context<AddPool>, params: &AddPoolParams) -> Result<()> {
// validate inputs
if params.name.is_empty() || params.name.len() > 64 {

return Err(ProgramError::InvalidArgument.into());
}

}

Remediation

Enforce a limit on the length of params.name to prevent collisions and ensure that the program derived
address creation process remains valid. Ensuring that params.name.len() <= 32 guarantees that
the seed length remains within the constraints

Patch

Fixed in bd90f16.

© 2023 Otter Audits LLC. All Rights Reserved. 17 / 20

https://github.com/jup-ag/perpetuals/pull/6/commits/bd90f162abd81a2f1b1be61dfc277f42fc9c2b62

Jupiter Perp Audit 05 | General Findings

OS-JPT-SUG-01 | Protocol Modifications

Description

1. In the current setup, all custody vaults share the same authority, implying that a single authority
manages operations across different custody vaults. This may result in account validation issues if
there are conflicts or unexpected interactions between different instances of a program that share
the same authority. Moreover, if the authority becomes compromised, it may affect all the vaults.

2. There is a lack of implementation of withdrawal delay, resulting in the swift withdrawal of funds in
case of a compromise or unauthorized access. Incorporating a withdrawal delay in the protocol is a
protectivemeasure against hasty and potentiallymalicious fundwithdrawals. Additionally, it allows
the protocol to detect and prevent suspicious withdrawals before they impact the broader system.

3. The protocol currently has a precision of six decimals for prices, which may limit accuracy, espe-
cially when dealing with high-value assets. Enhance precision by switching to u128 for better
representation and calculation of prices.

Remediation

1. Have a per-pool authority, which decreases the likelihood of such validation issues as each pool
operates independently with its own authority.

2. Implement a withdrawal delay as a proactive security measure to enhance the protocol’s safety by
introducing a time buffer against potential exploits.

3. Implement the above recommendation.

© 2023 Otter Audits LLC. All Rights Reserved. 18 / 20

A | Vulnerability Rating Scale
Weratedour findingsaccording to the following scale. Vulnerabilitieshave immediate security implications.
Informational findings may be found in the General Findings section.

Critical Vulnerabilities that immediately result in a loss of user funds with minimal precondi-
tions.

Examples:

• Misconfigured authority or access control validation.
• Improperly designed economic incentives leading to loss of funds.

High Vulnerabilities that may result in a loss of user funds but are potentially difficult to
exploit.

Examples:

• Loss of funds requiring specific victim interactions.
• Exploitation involving high capital requirement with respect to payout.

Medium Vulnerabilities that may result in denial of service scenarios or degraded usability.

Examples:

• Computational limit exhaustion throughmalicious input.
• Forced exceptions in the normal user flow.

Low Low probability vulnerabilities, which are still exploitable but require extenuating
circumstances or undue risk.

Examples:

• Oracle manipulation with large capital requirements andmultiple transactions.

Informational Best practices tomitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants.
• Improved input validation.

© 2023 Otter Audits LLC. All Rights Reserved. 19 / 20

B | Procedure
As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an on-chain program. In other words, there is no way to steal funds or deny service,
ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal
interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could bemanipulated by flash
loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle is
deployed on.

On the other hand, auditing the program’s implementation requires a deep understanding of the chain’s
executionmodel. While this varies from chain to chain, some common implementation vulnerabilities
include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to bemore “checklist” style. In contrast,
design vulnerabilities require a strongunderstandingof theunderlying systemand the various interactions:
both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,
we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,
picking up on details that the other missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2023 Otter Audits LLC. All Rights Reserved. 20 / 20

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	OS-JPT-ADV-00 [high] | Rounding Error
	OS-JPT-ADV-01 [high] | Front-Running Position Execution
	OS-JPT-ADV-02 [med] | Integer Overflow/Underflow
	OS-JPT-ADV-03 [med] | Fund Loss Via Malicious Keeper
	OS-JPT-ADV-04 [low] | Inability To Close Position
	OS-JPT-ADV-05 [low] | Missing Validation
	OS-JPT-ADV-06 [low] | Event Manipulation

	General Findings
	OS-JPT-SUG-00 | Pool Name Length Constraint
	OS-JPT-SUG-01 | Protocol Modifications

	Appendices
	Vulnerability Rating Scale
	Procedure

