
1 Security Assessment Report

Jupiter Perpetual Exchange
January 17, 2024

Sec3 Report

Summary

The Sec3 team (formerly Soteria) was engaged to conduct a thorough security analysis of the

Jupiter Perpetual Exchange smart contract and the Jupiter Perpetual Keeper.

The artifact of the audit was the source code of the following programs, excluding tests, in a

private repository.

The initial audit focused on the following versions and revealed 21 issues or questions.

program type commit

P1 Jupiter Perpetual Exchange Solana f8b89ed9d241e896ad5e06582b46e89be992decc

P2 Jupiter Perpetual Keeper TypeScript fa26894cf18985a48ae138394efdb2d5bff4408f

This report provides a detailed description of the findings and their respective resolutions.

1

Sec3 Report

Table of Contents

Result Overview.. 3

Findings in Detail .. 4

[P1-M-01] Incorrect trigger price validation ... 4

[P1-L-01] Discrepant accounting detail in get_decrease_position.. 5

[P1-L-02] Incorrect calculation in check_leverage... 6

[P1-I-01] Insufficient space allocated for pool.. 7

[P1-I-02] Incorrect math calculation in checked_decimal_div ... 8

[P1-I-03] Incorrect math calculation in checked_ceil_div .. 10

[P1-I-04] Different PriceCalcMode used when updatding pool.aum_usd................................. 12

[P1-I-05] size_usd_delta not checked in update_increase_position_request 14

[P1-I-06] Incorrect instruction relation checks ... 15

[P1-I-07] Inaccurate PriceCalcMode used for position prices.. 16

[P1-I-08] Slightly inaccurate APR ... 17

[P1-I-09] Inaccurate fee accounting in liquidate_position ... 18

[P1-I-10] Better roundings ... 19

[P1-I-11] Incorrect log message in swap_exact_out ... 20

[P1-I-12] Consider invoking withdraw_fees before modifying pool.fees 21

[P1-I-13] open_time can be updated before position_request get executed............................ 22

[P1-I-14] Potential type confusion between Side::None and Side::Short.................................. 23

[P1-Q-01] Inconsistent behavior of getters related to fee.. 24

[P2-M-01] Unremovable requests may degrade the keeper's performance 25

[P2-I-01] Transaction failure caused by unchecked Request execution status........................ 27

[P2-I-02] Redundant closePositionRequest processing .. 28

Appendix: Methodology and Scope of Work... 29

2

Sec3 Report

Result Overview

Issue Impact Status

JUPITER PERPETUAL EXCHANGE

[P1-M-01] Incorrect trigger price validation Medium Resolved

[P1-L-01] Discrepant accounting detail in get_decrease_position Low Resolved

[P1-L-02] Incorrect calculation in check_leverage Low Resolved

[P1-I-01] Insufficient space allocated for pool Info Resolved

[P1-I-02] Incorrect math calculation in checked_decimal_div Info Resolved

[P1-I-03] Incorrect math calculation in checked_ceil_div Info Resolved

[P1-I-04] Different PriceCalcMode used when updatding pool.aum_usd Info Resolved

[P1-I-05] size_usd_delta not checked in update_increase_position_request Info Resolved

[P1-I-06] Incorrect instruction relation checks Info Resolved

[P1-I-07] Inaccurate PriceCalcMode used for position prices Info Resolved

[P1-I-08] Slightly inaccurate APR Info Resolved

[P1-I-09] Inaccurate fee accounting in liquidate_position Info Resolved

[P1-I-10] Better roundings Info Resolved

[P1-I-11] Incorrect log message in swap_exact_out Info Resolved

[P1-I-12] Consider invoking withdraw_fees before modifying pool.fees Info Resolved

[P1-I-13] open_time can be updated before position_request get executed Info Resolved

[P1-I-14] Potential type confusion between Side::None and Side::Short Info Resolved

[P1-Q-01] Inconsistent behavior of getters related to fee Question Resolved

JUPITER PERPETUAL KEEPER

[P2-M-01] Unremovable requests may degrade the keeper's performance Medium Resolved

[P2-I-01] Transaction failure caused by unchecked Request execution status Info Resolved

[P2-I-02] Redundant closePositionRequest processing Info Resolved

3

Sec3 Report

Findings in Detail

JUPITER PERPETUAL EXCHANGE
[P1-M-01] Incorrect trigger price validation

In the “update_decrease_position_request” instruction, an incorrect function was used for cal-

culating the “current_price” at L125, which results in a price discrepancy of twice the spread

when checking at L131. The correct function to be used is “get_exit_price”.

∕* programs∕perpetuals∕src∕instructions∕update_decrease_position_request.rs *∕
125 | let current_price = pool.get_entry_price(¤t_token_price, position.side, custody)?;
126 |
127 | position_request.update_time = curtime;
128 | position_request.size_usd_delta = params.size_usd_delta;
129 | position_request.trigger_price = Some(params.trigger_price);
130 |
131 | position_request.validate(current_price)?;

Taking the case of “trigger_above_threshold=false” as an example, this allows amalicious user

to set a “trigger_price” higher than the actual price. Since the current price satisfies the trig-

gering condition, the position request can be executed, and the erroneous price is used in PnL

calculation. However, due to the position price itself being subjected to a spread, the attacker is

unable to repeatedly exploit this, gaining only a minimal extra profit instead.

Resolution

The team clarified that the spread is currently set to 0, so this issue won’t be exploitable. This

issue has been resolved in commit 6302e12f78f563ab1971bb7f42b067008155ab86.

4

Sec3 Report

JUPITER PERPETUAL EXCHANGE
[P1-L-01] Discrepant accounting detail in get_decrease_position

When decreasing a position, if the “transfer_amount_usd” is less than the “fee_usd”, the handling

of users’ “collateral_usd” and “transfer_amount_usd” are inconsistent between “decrease_posi

tion” and “get_decrease_position”.

∕* programs∕perpetuals∕src∕instructions∕get_decrease_position.rs *∕
166 | if transfer_amount_usd > fee_usd {
167 | transfer_amount_usd = math::checked_sub(transfer_amount_usd, fee_usd)?;
168 | } else {
169 | position.collateral_usd = position.collateral_usd.saturating_sub(fee_usd);
170 | }

∕* programs∕perpetuals∕src∕instructions∕decrease_position.rs *∕
322 | if transfer_amount_usd > fee_usd {
323 | transfer_amount_usd = math::checked_sub(transfer_amount_usd, fee_usd)?;
324 | } else {
325 | position.collateral_usd = position
326 | .collateral_usd
327 | .saturating_sub(math::checked_sub(fee_usd, transfer_amount_usd)?);
328 | transfer_amount_usd = 0;
329 | }

Recommendations

Make sure the accounting is consistent between get instructions and the corresponding opera-

tional instructions.

Resolution

This issue has been resolved in commit ea7e082f34539b297621e95079d4e5e992a3c3c9.

5

Sec3 Report

JUPITER PERPETUAL EXCHANGE
[P1-L-02] Incorrect calculation in check_leverage

According to the document, the liquidation price is calculated as follows:

This price is calculated basedon the thresholdwhere the loss amount, collateral value,

and borrow fee collectively dip below 0.5% of your position’s size.

∕* programs∕perpetuals∕src∕state∕pool.rs *∕
411 | if fee_usd > remaining_collateral_usd {
412 | return Ok(false);
413 | }
414 |
415 | let max_leverage_usd_bps = math::checked_mul(
416 | remaining_collateral_usd as u128,
417 | custody.pricing.max_leverage as u128,
418 |)?;
419 | let position_size_usd_bps =
420 | math::checked_mul(position.size_usd as u128, Perpetuals::BPS_POWER)?;
421 |
422 | Ok(position_size_usd_bps <= max_leverage_usd_bps)

However, in the implementation, upon confirming that “remaining_collateral_usd” is greater

than or equal to “fee_usd”, it proceeds tomultiply it directly with “max_leverage” and compares it

with “size_usd”, without subtracting “fee_usd” beforehand. This implementation is in contradic-

tion with the document and the threshold price calculated in “get_liquidation_price”, causing

certain positions that should have been liquidated to remain uncleared, thereby delaying the

liquidation process.

Recommendations

Consider deducting the “fee_usd” from “remaining_collateral_usd” before calculating the “max_

leverage_usd_bps”.

Resolution

This issue has been resolved in commit e5243b1c53ba523455f7c6fe318a5e70134f676b.

6

https://station.jup.ag/labs/perpetual-exchange/trading#liquidations

Sec3 Report

JUPITER PERPETUAL EXCHANGE
[P1-I-01] Insufficient space allocated for pool

The allocated space for the pool account is not sufficient.

∕* perpetuals∕src∕state∕pool.rs *∕
055 | pub struct Pool {
056 | pub name: String,
069 | }

075 | impl Pool {
076 | pub const LEN: usize = 8 + std::mem::size_of::<Pool>();

∕* perpetuals∕src∕instructions∕add_pool.rs *∕
018 | pub struct AddPool<'info> {
040 | #[account(
041 | init,
042 | payer = admin,
043 | space = Pool::LEN,
044 | seeds = [POOL_SEED,
045 | params.name.as_bytes()],
046 | bump
047 |)]
048 | pub pool: Box<Account<'info, Pool>>,

“Pool::LEN” is calculated using “std::mem::size_of::<Pool>()”, which will request 24 bytes for

a string. However, Anchor needs “4 + length of the string in bytes” for a string.

When the “params.name.as_bytes().len()” is larger than 20 (also not larger than 32 due to the

PDA seed size limit), the allocated space is not large enough.

(Note: the string length is the length in bytes, not the number of characters. https://doc.rust-

lang.org/std/string/struct.String.html#method.len-1)

Resolution

This issue has been resolved in commit 12ba57ac78de2cf0d4c877da775f65e0ec60dc5a.

7

https://doc.rust-lang.org/std/string/struct.String.html#method.len-1
https://doc.rust-lang.org/std/string/struct.String.html#method.len-1

Sec3 Report

JUPITER PERPETUAL EXCHANGE
[P1-I-02] Incorrect math calculation in checked_decimal_div

∕* programs∕perpetuals∕src∕math.rs *∕
082 | pub fn checked_decimal_div(
083 | coefficient1: u64,
084 | exponent1: i32,
085 | coefficient2: u64,
086 | exponent2: i32,
087 | target_exponent: i32,
088 |) -> Result<u64> {
096 | ∕∕ compute scale factor for the dividend
097 | let mut scale_factor = 0;
098 | let mut target_power = checked_sub(checked_sub(exponent1, exponent2)?, target_exponent)?;
099 | if exponent1 > 0 {
100 | scale_factor = checked_add(scale_factor, exponent1)?;
101 | }
102 | if exponent2 < 0 {
103 | scale_factor = checked_sub(scale_factor, exponent2)?;
104 | target_power = checked_add(target_power, exponent2)?;
105 | }
106 | if target_exponent < 0 {
107 | scale_factor = checked_sub(scale_factor, target_exponent)?;
108 | target_power = checked_add(target_power, target_exponent)?;
109 | }

In the implementation of “checked_decimal_div”, in order to enhance precision asmuch as possi-

ble, an approach has been adopted to calculate the “scale_factor” and “target_power” based on

the exponents of the source operands and the “target_exponent”. The computation is then per-

formed on the scaled data. However, in the calculation process, at L100, only the “scale_factor”

is updated without a corresponding update to “target_power”. This leads to a situation where,

when “exponent1” is greater than 0, the result returned by “checked_decimal_div” is larger in

magnitude than expected by “exponent1”.

A similar vulnerability exists in the implementation of “checked_decimal_ceil_div”.

Fortunately, all places where these two functions are called have “exponent1” less than 0, pre-

venting the triggering of this serious calculation error.

Exploit PoC

This issue can be triggered as follows:

8

Sec3 Report

#[test]
fn test_math_poc() {

assert_eq!(
2_000_000,
checked_decimal_div(1_000, -6, 500, -6, -6).unwrap()

);
assert_eq!(

2_000_000,
checked_decimal_div(1_000, 6, 500, 6, -6).unwrap()

);
}

Recommendations

Consider updating “target_power” accordingly on L100.

Resolution

This issue has been resolved in commit 38829c63f770aac293656ef2619688e715024817.

9

Sec3 Report

JUPITER PERPETUAL EXCHANGE
[P1-I-03] Incorrect math calculation in checked_ceil_div

∕* programs∕perpetuals∕src∕math.rs *∕
055 | pub fn checked_ceil_div<T>(arg1: T, arg2: T) -> Result<T>
056 | where
057 | T: num_traits::PrimInt + Display,
058 | {
059 | if arg1 > T::zero() {
060 | if arg1 == arg2 && arg2 != T::zero() {
061 | return Ok(T::one());
062 | }
063 | if let Some(res) = (arg1 - T::one()).checked_div(&arg2) {
064 | Ok(res + T::one())
065 | } else {
066 | Err(error!(PerpetualsError::MathOverflow).with_values((arg1, arg2)))
067 | }
068 | } else if let Some(res) = arg1.checked_div(&arg2) {
069 | Ok(res)
070 | } else {
071 | Err(error!(PerpetualsError::MathOverflow).with_values((arg1, arg2)))
072 | }
073 | }

In the implementation of “checked_ceil_div”, for the expression “checked_ceil_div(x, y)”, the

program first checks whether x is greater than 0. If true, it returns ⌊ x−1
y ⌋ + 1; otherwise, it

returns ⌊ x
y⌋. However, there is an implicit assumption here that y is greater than 0. The cur-

rent implementation returns incorrect results when y is less than 0. Also, it’s worth noting that

“x.checked_div(y)” doesn’t means ⌊ x
y⌋when sign(x) ̸= sign(y).

Fortunately, all places where this function are called have “arg2” unsigned, preventing the trig-

gering of this calculation error.

Exploit PoC

This issue can be triggered as follows:

#[test]
pub fn test_checked_ceil_div() {

assert_eq!(checked_ceil_div(9_i32, 3_i32).unwrap(), 3);
assert_eq!(checked_ceil_div(-9_i32, -3_i32).unwrap(), 3);

assert_eq!(checked_ceil_div(9_i32, 2_i32).unwrap(), 5);
assert_eq!(checked_ceil_div(-9_i32, -2_i32).unwrap(), 4);
assert_eq!(checked_ceil_div(-9_i32, 2_i32).unwrap(), -4);

10

Sec3 Report

assert_eq!(checked_ceil_div(9_i32, -2_i32).unwrap(), -4); ∕∕ program returns -3
assert_eq!(checked_ceil_div(9_i32, -3_i32).unwrap(), -3); ∕∕ program returns -1

}

Recommendations

Consider adding a “num::Unsigned” bound to this function.

Resolution

This issue has been resolved in commit 278acde92ff32491aa50d865da72d4173cb6de2c.

11

Sec3 Report

JUPITER PERPETUAL EXCHANGE
[P1-I-04] Different PriceCalcMode used when updatding pool.aum_usd

∕* programs∕perpetuals∕src∕instructions∕add_liquidity.rs *∕
146 | let pool_amount_usd =
147 | pool.get_assets_under_management_usd(PriceCalcMode::Max, ctx.remaining_accounts, curtime)?;
229 | pool.aum_usd = math::checked_add(pool_amount_usd, mint_amount_usd as u128)?;

∕* programs∕perpetuals∕src∕instructions∕remove_liquidity.rs *∕
135 | let pool_amount_usd =
136 | pool.get_assets_under_management_usd(PriceCalcMode::Min, ctx.remaining_accounts, curtime)?;
201 | pool.aum_usd = math::checked_sub(pool_amount_usd, remove_amount_usd as u128)?;

∕* programs∕perpetuals∕src∕state∕pool.rs *∕
326 | let input_fee_bps = self.get_fee_bps(
327 | custody_in,
328 | swap_usd_amount,
329 | base_fee_bps,
330 | tax_fee_bps,
331 | true,
332 | self.aum_usd,
333 | token_price_in,
334 |)?;
335 | let output_fee_bps = self.get_fee_bps(
336 | custody_out,
337 | swap_usd_amount,
338 | base_fee_bps,
339 | tax_fee_bps,
340 | false,
341 | self.aum_usd,
342 | token_price_out,
343 |)?;

In the “add_liquidity” and “remove_liquidity” instructions, the values of “pool_amount_usd”may

differ slightly due to the use of different “PriceCalcMode”. “pool.aum_usd” is then used in the cal-

culation of swap fees.

Therefore, usersmaybe able to reduce the swap fees by inserting an “add_liquidity”or “remove_

liquidity” instruction before swap.

However, the amount that can be reduced is very small.

Recommendations

Consider using a unified “PriceCalcMode”when updating “aum_usd”.

12

Sec3 Report

Resolution

The team acknowledged this issue and opted to retain it in its current state, as the amount dif-

ference should be negligible.

13

Sec3 Report

JUPITER PERPETUAL EXCHANGE
[P1-I-05] size_usd_delta not checked in update_increase_position_request

∕* programs∕perpetuals∕src∕instructions∕create_increase_position_request.rs *∕
143 | if params.size_usd_delta > 0 {
144 | require!(
145 | perpetuals.permissions.allow_increase_position
146 | && custody.permissions.allow_increase_position,
147 | PerpetualsError::InstructionNotAllowed
148 |);
149 |
150 | require!(
151 | custody.validate_max_global_size(params.side, params.size_usd_delta)?,
152 | PerpetualsError::CustodyAmountLimit
153 |);
154 |
155 | require!(
156 | pool.validate_max_position_size(position.size_usd, params.size_usd_delta)?,
157 | PerpetualsError::CustodyAmountLimit
158 |);
159 | }

The “update_increase_position_request” instruction only checks whether the “size_usd_delta”

is 0, but does not check whether the “size_usd_delta” is too large (for both the custody and

the pool). In contrast, the “create_increase_position_request” instruction checks whether the

“size_usd_delta”meets the limits in the custody and pool.

As relevant checks are present during actual operations by the keeper, the absence of the check

at this point does not pose a security concern. However, it is recommended to add a check to

the “update_increase_position_request” instruction to ensure that the “size_usd_delta” is less

than the maximum allowed value.

Similarly, in “update_decrease_position_request”, there is no check for the “allow_decrease_posi

tion” permission for both perpetuals and custody.

Resolution

This issue has been resolved in commits 9a1b40455000dac53d79f84b941cf7b17b62ab21 and

18e1124a381ed4912fa31038ac01492523bc4c30.

14

Sec3 Report

JUPITER PERPETUAL EXCHANGE
[P1-I-06] Incorrect instruction relation checks

∕* programs∕perpetuals∕src∕instructions∕increase_position_pre_swap.rs *∕
179 | ∕∕ Check Increase Position Ix
180 | if let Ok(increase_position_ixn) = load_instruction_at_checked(current_idx + 2, &instruction) {
181 | require_keys_eq!(
182 | current_ixn.program_id,
183 | *ctx.program_id,
184 | PerpetualsError::CPINotAllowed
185 |);

The “current_ixn” on L182 should be “increase_position_ixn”.

Similarly, in “decrease_position”:

∕* programs∕perpetuals∕src∕instructions∕decrease_position.rs *∕
466 | ∕∕ Check Decrease Position Post Swap Ix
467 | if let Ok(decrease_position_post_swap_ixn) =
468 | load_instruction_at_checked(current_idx + 2, &instruction)
469 | {
470 | require_keys_eq!(
471 | current_ixn.program_id,
472 | *ctx.program_id,
473 | PerpetualsError::CPINotAllowed
474 |);

The “current_ixn” on L471 should be “decrease_position_post_swap_ixn”.

Resolution

This issue has been resolved in commits ff60852124741b8f3bcda5d607f806cb51f1c1e0 and

a406fa92e10a3ff9a982226cad6dc4b013196e71.

15

Sec3 Report

JUPITER PERPETUAL EXCHANGE
[P1-I-07] Inaccurate PriceCalcMode used for position prices

∕* programs∕perpetuals∕src∕instructions∕get_oracle_price.rs *∕
054 | let increase_position_token_price = OraclePrice::new_from_oracle(
055 | &ctx.accounts.custody_oracle_account.to_account_info(),
056 | &custody.oracle,
057 | curtime,
058 | custody.is_stable,
059 | PriceCalcMode::Min,
060 | None,
061 | PriceStaleTolerance::Loose,
062 |)?;
063 |
064 | let decrease_position_token_price = OraclePrice::new_from_oracle(
065 | &ctx.accounts.custody_oracle_account.to_account_info(),
066 | &custody.oracle,
067 | curtime,
068 | custody.is_stable,
069 | PriceCalcMode::Max,
070 | None,
071 | PriceStaleTolerance::Loose,
072 |)?;
073 |
074 | let increase_long =
075 | pool.get_entry_price(&increase_position_token_price, Side::Long, custody)?;
076 | let increase_short =
077 | pool.get_entry_price(&increase_position_token_price, Side::Short, custody)?;
078 | let decrease_long = pool.get_exit_price(&decrease_position_token_price, Side::Long, custody)?;
079 | let decrease_short =
080 | pool.get_exit_price(&decrease_position_token_price, Side::Short, custody)?;

In “get_oracle_price”, adjustedpricesare calculated for “increase_long”, “increase_short”, “decr

ease_long” and “decrease_short”. However, there is a potential for slight discrepancies in the

pricesobtained for stablecoinsdue to theuseof “PriceCalcMode::Min”or “PriceCalcMode::Max” in

the calculation process, without aligning with the actual prices using “PriceCalcMode::Ignore”.

Resolution

The team clarified that there is no market for stablecoins, so this issue will not pose any prob-

lems.

16

Sec3 Report

JUPITER PERPETUAL EXCHANGE
[P1-I-08] Slightly inaccurate APR

∕* programs∕perpetuals∕src∕instructions∕withdraw_fees.rs *∕
149 | let pool_amount_usd = pool.get_assets_under_management_usd(
150 | PriceCalcMode::Max,
151 | ctx.remaining_accounts,
152 | curtime,
153 | PriceStaleTolerance::Loose,
154 |)?;

In the “withdraw_fees” instruction, if the time elapsed since the last update of APR exceeds one

week, the APR information for the pool is reevaluated. This involves dividing the fees collected

during this period by the total funds in the pool, calculated by summing the funds from all cus-

todies in the remaining accounts, and then dividing by the proportion of this period to a year. It is

noteworthy that the data used for calculating the total pool funds, derived from the remaining

accounts,may exhibit slight discrepancies compared to actual data. This discrepancy arises due

to a minor inconsistency in the code (an increase of “owned” in the code, which is not reflected

in the corresponding custody in remaining accounts). Consequently, the calculated APR may be

slightly higher than the actual value, although the disparity is exceedingly subtle.

Recommendations

Consider adding “pool_token_amount_usd” to “pool_amount_usd” to enhance the accuracy of this

denominator.

Resolution

This issue has been resolved in commit 05d06f9908cb2070692ff33244ed0c2434ba038c.

17

Sec3 Report

JUPITER PERPETUAL EXCHANGE
[P1-I-09] Inaccurate fee accounting in liquidate_position

∕* programs∕perpetuals∕src∕instructions∕liquidate_position.rs *∕
190 | ∕∕ compute fee
191 | let fee_usd = pool.collect_margin_fees(
192 | position,
193 | collateral_custody,
194 | position.size_usd,
195 | curtime,
196 | &collateral_token_price,
197 | pool.fees.decrease_position_bps,
198 |)?;
199 | msg!("Collected fee: {}", fee_usd);
228 | if remaining_collateral_usd > fee_usd {
229 | remaining_collateral_usd = math::checked_sub(remaining_collateral_usd, fee_usd)?;
245 | } else {
246 | remaining_collateral_usd = 0;
247 | }

During the “liquidate_position”process, there is a very lowprobability that the “remaining_coll

ateral_usd” for a positionmay be insufficient to cover the fee. In such cases, it may be advisable

to consider deducting any excess fee collected in “collect_margin_fees” from the fees already

added to “fees_reserves” to ensure that fees are not generated without adequate coverage.

A similar issue lies in the “decrease_position” instruction as shown below:

∕* programs∕perpetuals∕src∕instructions∕decrease_position.rs *∕
320 | ∕∕ deduct fee from the transfer_amount_usd
321 | ∕∕ deduct from collateral_usd if not enough
322 | if transfer_amount_usd > fee_usd {
323 | transfer_amount_usd = math::checked_sub(transfer_amount_usd, fee_usd)?;
324 | } else {
325 | position.collateral_usd = position
326 | .collateral_usd
327 | .saturating_sub(math::checked_sub(fee_usd, transfer_amount_usd)?);
328 | transfer_amount_usd = 0;
329 | }

Resolution

The team acknowledged this issue and opted to retain it in its current state, given its low prob-

ability.

18

Sec3 Report

JUPITER PERPETUAL EXCHANGE
[P1-I-10] Better roundings

In the current implementation, almost all instanceswheredivision is utilized (except for “get_fee

_amount”) employ “checked_div” for rounding down. Although the integers involved are often

scaled by a certain factor, and the impact of rounding is generally negligible, it is still advisable

to consider a more fine-grained adjustment of the rounding method to safeguard the protocol

and protect the LPs. Potential improvements may include:

• Round up funding fee in “get_funding_fee”

• Adopt fine-grained rounding methods for PnL based on whether the user is experiencing

aprofit or a loss. Roundup in the caseof a user incurring a loss and rounddownotherwise

• Adopt fine-grained rounding methods for average prices. Round up for long position and

round down for short position

Resolution

This issue has been resolved in commits 029ced212a5d9a30585e63a07a5a318dfe0c31aa and

80fdf9980e69e3415a7cfdab127f7ca94b6febea.

19

Sec3 Report

JUPITER PERPETUAL EXCHANGE
[P1-I-11] Incorrect log message in swap_exact_out

∕* programs∕perpetuals∕src∕instructions∕swap_exact_out.rs *∕
192 | let amount_in_after_fees =
193 | pool.collect_swap_exact_out_fees(receiving_custody, amount_in, fee_bps)?;
194 | msg!("Amount out: {}", amount_in_after_fees);

The “Amount out” on L194 should be “Amount in”.

Resolution

This issue has been resolved in commit 9d85e57518f76f3ebb1f5cb65590a017b5f6605a.

20

Sec3 Report

JUPITER PERPETUAL EXCHANGE
[P1-I-12] Consider invoking withdraw_fees before modifying pool.fees

∕* programs∕perpetuals∕src∕instructions∕withdraw_fees.rs *∕
107 | let protocol_token_amount = custody
108 | .assets
109 | .fees_reserves
110 | .mul_and_divide_checked(pool.fees.protocol_share_bps, Perpetuals::BPS_POWER)?;

Whenwithdrawing fees, the calculation of the protocol fee share utilizes thepool’s “fees.protoc

ol_share_bps” at that specific moment. This implies that when invoking “set_pool_config” to

modify “protocol_share_bps” and there are still unredeemed fees, this portionwill be processed

according to the new sharing ratio. If there is no inclusion of a check for the “fees_reserves” bal-

ance in “set_pool_config”, it becomes necessary to consider whether to execute a preliminary

“withdraw_fees” before each modification of “protocol_share_bps”. However, the necessity of

this action entirely hinges upon the anticipated behavior and should not introduce any security

vulnerabilities.

Resolution

The teamacknowledged this issue andopted tomaintain its current state. They assert that their

futureoperational procedureswill ensure thewithdrawal of feesbeforeupdating the “protocol_

share_fees”.

21

Sec3 Report

JUPITER PERPETUAL EXCHANGE
[P1-I-13] open_time can be updated before position_request get executed

∕* programs∕perpetuals∕src∕instructions∕create_increase_position_request.rs *∕
208 | if position.size_usd == 0 {
209 | position.owner = ctx.accounts.owner.key();
210 | position.pool = pool.key();
211 | position.custody = custody.key();
212 | position.collateral_custody = collateral_custody.key();
213 | position.open_time = curtime;
214 | position.side = params.side;
215 | position.bump = *ctx
216 | .bumps
217 | .get("position")
218 | .ok_or(ProgramError::InvalidSeeds)?;
219 | }

In the “create_increase_position_request” instruction, based on the check at L208, users can

update the “open_time” by making repeated calls as long as the preceding increase request for

a given position has not been executed. A more robust check for initialization might involve

examining whether “open_time” is 0. However, this issue does not introduce any security risks.

Resolution

The team clarified that this represents the intended behavior rather than being an issue.

22

Sec3 Report

JUPITER PERPETUAL EXCHANGE
[P1-I-14] Potential type confusion between Side::None and Side::Short

If a user employs “Side::None” as the side of the position when creating an increase or decrease

position request, in some functions, it may be confused with “Side::Short” (or “Side::Long”).

However, since only “size_usd_delta” = 0 can bypass the checks when creating the requests,

the type confusion does not pose any security risk.

Possible affected functions:

1. “increase_position”

2. “decrease_position”

3. “Pool::get_entry_price”

4. “Pool::get_exit_price”

5. “Pool::get_liquidation_price”

6. “Position::has_profit”

Although certain restrictions in some functions make it impossible for “Side::None” to occur, al-

lowing a safe assumption that side is either Long or Short (such as the “position.size_usd” > 0

check in the “increase_position” function), it is still advisable to explicitly handle all three cases

in situations where differentiation based on different sides is necessary.

Resolution

This issue has been resolved in commits 9a69f8bf33e365b90d59d7d544fbc886d2fd5dd5 and

fdc0d781add6f836b2a314773e469c33cc8a5e9a.

23

Sec3 Report

JUPITER PERPETUAL EXCHANGE
[P1-Q-01] Inconsistent behavior of getters related to fee

In the instructions “get_add∕remove_liquidity_amount_and_fee”, the returned “amount” is deducted

by the fee. However, in the instructions “get_(exact_out_)swap_amount_and_fees”, this deduc-

tion is not present.

We’d like to inquire if this behavior is intentional?

Resolution

The teamacknowledged this issue and opted to retain it in its current state, as they are planning

to deprecated some get functions soon.

24

Sec3 Report

JUPITER PERPETUAL KEEPER
[P2-M-01] Unremovable requests may degrade the keeper's performance

In “keeper∕src∕perp∕closePositionRequest.ts”, if the “closePositionRequestIx” on L64 fails to

construct an instruction, the “sendAndConfirm” on L69 in “closePositionRequest”will not be exe-

cuted.

∕* src∕perp∕closePositionRequest.ts *∕
061 | export const closePositionRequest = async (
062 | positionRequestAccount: PositionRequestAccount
063 |) => {
064 | const ix = await closePositionRequestIx(positionRequestAccount);
065 |
066 | if (!ix) return;
067 |
068 | const tx = new Transaction().add(ix);
069 | const txid = await perpProgram.provider.sendAndConfirm!(
070 | tx,
071 | undefined,
072 | submitConfirmOption
073 |);
074 |
075 | console.log({ txid });
076 |
077 | return txid;
078 | };

In particular, as shown in the following snippet, when the “ownerAta” account does not exist and

there is a non-SOL balance in the “positionRequest”, function “closePositionRequestIx”will re-

turn “undefined” and the request will not be closed.

∕* src∕perp∕closePositionRequest.ts *∕
039 | if (
040 | createOwnerAtaIx &&
041 | !positionRequest.mint.equals(NATIVE_MINT) &&
042 | Number(ataBalance.value.amount) > 0
043 |)
044 | return;

An attacker can initiate a request and then actively delete the ATA to prevent the request from

being closed. By continuously repeating this operation, a large number of unclosable requests

will be seen by the “getPendingMarketPositionRequests” function.

The Keeper calls “getPendingMarketPositionRequests” every 600 milliseconds and processes

25

Sec3 Report

thesemalicious requests that cannot be closed. Thiswill compromise the Keeper’s performance

and may ultimately lead to a DoS attack.

Recommendations

Consider sending the “createOwnerAtaIx” transaction instead of returning directly on L44 in

“src∕perp∕closePositionRequest.ts”

Resolution

The team acknowledged this issue and clarified that it has been resolved in a refactored version

that is not in the scope of this review.

26

Sec3 Report

JUPITER PERPETUAL KEEPER
[P2-I-01] Transaction failure caused by uncheckedRequest execution status

Position requests have an “executed” field to indicate whether the current request has been ex-

ecuted, which can be used to prevent multiple executions of the same request.

∕* src∕state∕position_request.rs *∕
035 | #[account]
036 | #[derive(Default, Debug)]
037 | pub struct PositionRequest {
075 | pub executed: bool,

In Market Order Keeper defined in “executeRequest.ts”, there is no off-chain check for whether

“executed” is true. Instead, it directly sends a transaction to process the request and determines

success or failure based on the transaction result.

In addition,whena transaction fails, it enters the “handleFailedPositionRequest” functionwhere

a “closePositionRequest” transaction will be sent.

Therefore, Becausemultiple instances of keepers do not check the executed status and directly

execute requests, redundant “closePositionRequest” transactions, which will deterministically

fail, may be sent. Such practices will increase operating costs for Keeper.

Onmainnet,weobserved several similar scenarioswhere the same request hasbeen repeatedly

closed by two keepers and many of themwere failed. Here is an example on solscan.

Resolution

The team acknowledged this issue and clarified that it has been resolved in a refactored version

that is not in the scope of this review.

27

https://solscan.io/account/rGQBgUSJgPiYoGhKKLJRbAx2YvW5RVgZz96pDc8Y51P

Sec3 Report

JUPITER PERPETUAL KEEPER
[P2-I-02] Redundant closePositionRequest processing

Within the “executeLimitOrder:closePositionRequestsLoop” function, the keeper verifies theex-

ecution status of the requests and closes executed requests.

∕* src∕executeLimitOrder.ts *∕
037 | try {
038 | if (executed) {
039 | console.log(`Request already executed: ${publicKey.toBase58()}`);
040 | await closePositionRequest(request);
041 | }
042 |
043 | const positionAccount = await perpProgram.account.position.fetch(
044 | position
045 |);
046 |
047 | if (positionAccount.sizeUsd.eqn(0) && requestChange.decrease) {
048 | console.log(
049 | `Position already decreased to sizeUsd 0: ${publicKey.toBase58()}`
050 |);
051 | await closePositionRequest(request);
052 | continue;
053 | }
054 |
055 | ∕∕ No rush
056 | await wait(1_000);
057 | }

When confirming that a request should be closed and invoking “closePositionRequest”, the sub-

sequent step should be to proceed directly to the next iteration of the loop. However, due to the

absence of a “continue” directive at L40, the current iteration may continue to execute, poten-

tially triggering another “closePositionRequest”.

Resolution

The team acknowledged this issue and clarified that it has been resolved in a refactored version

that is not in the scope of this review.

28

Sec3 Report

Appendix: Methodology and Scope ofWork

The Sec3 (formerly Soteria) audit team, which consists of Computer Science professors and

industrial researchers with extensive experience in smart contract security, program analy-

sis, testing and formal verification, performed a comprehensive manual code review, software

static analysis and penetration testing.

Assisted by the Sec3 Scanner developed in-house, the audit team particularly focused on the

following work items:

• Check common security issues.

• Check program logic implementation against available design specifications.

• Check poor coding practices and unsafe behavior.

• The soundness of the economics design and algorithm is out of scope of this work

29

The instance report ("Report")waspreparedpursuant toanagreementbetweenCoderrect

Inc. d/b/a Sec3 (the "Company") and Raccoon Labs Pte. Ltd. (the "Client"). This Report

solely includes the results of a technical assessment of a specific build and/or version

of the Client's code specified in the Report ("Assessed Code") by the Company. The sole

purpose of the Report is to provide the Client with the results of the technical assessment

of the Assessed Code. The Report does not apply to any other version and/or build of the

Assessed Code. Regardless of the contents of the Report, the Report does not (and should

not be interpreted to) provide anywarranty, representation or covenant that theAssessed

Code: (i) is error and/or bug free, (ii) has no security vulnerabilities, and/or (iii) does not

infringe any third-party rights. Moreover, the Report is not, and should not be considered,

an endorsement by the Company of the Assessed Code and/or of the Client. Finally, the

Report should not be considered investment advice or a recommendation to invest in the

Assessed Code and/or the Client.

This Report is considered null and void if the Report (or any portion thereof) is altered in

any manner.

DISCLAIMER

Founded by leading academics in the field of software security and senior industrial

veterans, Sec3 (formerly Soteria) is a leading blockchain security company. We are also

building sophisticated security tools that incorporate static analysis, penetration

testing, and formal verification.

At Sec3, we identify and eliminate security vulnerabilities through the most rigorous

process and aided by the most advanced analysis tools.

For more information, check out our website and follow us on twitter.

ABOUT

https://www.sec3.dev/
https://twitter.com/Sec3dev

	Result Overview
	Findings in Detail
	[P1-M-01] Incorrect trigger price validation
	[P1-L-01] Discrepant accounting detail in get_decrease_position
	[P1-L-02] Incorrect calculation in check_leverage
	[P1-I-01] Insufficient space allocated for pool
	[P1-I-02] Incorrect math calculation in checked_decimal_div
	[P1-I-03] Incorrect math calculation in checked_ceil_div
	[P1-I-04] Different PriceCalcMode used when updatding pool.aum_usd
	[P1-I-05] size_usd_delta not checked in update_increase_position_request
	[P1-I-06] Incorrect instruction relation checks
	[P1-I-07] Inaccurate PriceCalcMode used for position prices
	[P1-I-08] Slightly inaccurate APR
	[P1-I-09] Inaccurate fee accounting in liquidate_position
	[P1-I-10] Better roundings
	[P1-I-11] Incorrect log message in swap_exact_out
	[P1-I-12] Consider invoking withdraw_fees before modifying pool.fees
	[P1-I-13] open_time can be updated before position_request get executed
	[P1-I-14] Potential type confusion between Side::None and Side::Short
	[P1-Q-01] Inconsistent behavior of getters related to fee
	[P2-M-01] Unremovable requests may degrade the keeper's performance
	[P2-I-01] Transaction failure caused by unchecked Request execution status
	[P2-I-02] Redundant closePositionRequest processing
	Appendix: Methodology and Scope of Work

